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Abstract: The construction of deep foundation pits in subway stations can affect the settlement of
existing buildings adjacent to the pits to varying degrees. In this paper, the Long Short-Term Memory
neural network prediction model of building settlement caused by deep foundation pit construction
was established using the monitoring data of building settlement around a deep foundation pit
project in a metro station in Shanghai, and appropriate hyperparameters including batch size and
training set ratio were determined. The accuracy of settlement prediction for single-point and multi-
point monitoring of buildings was analyzed. Meanwhile, the effects of construction parameters,
engineering geological parameters, and spatial parameters on the accuracy of building settlement
prediction were investigated. The results show that the batch size and training set proportion can
be taken as 16 and 60%, respectively, when using the Long Short-Term Memory neural network
prediction model. The proposed Long Short-Term Memory network model can stably predict the
settlement of buildings adjacent to deep foundation pits. The accuracy of settlement prediction at
a single point of a building (80%) is lower than the accuracy of coordinated prediction at multiple
points (88%). More accurate settlement prediction is achieved with the total reverse construction
method. The more detailed the consideration of working conditions, geological parameters, and
spatial parameters, the better. The evaluation metrics of the prediction model, RMSE, MAE, and R2,
were 0.57 mm, 0.65 mm, and 0.91, respectively. The results of this paper have some practical reference
value for analyzing the settlement of buildings caused by foundation pit works.

Keywords: Long Short-Term Memory neural network; construction conditions; settlement prediction;
geotechnical parameters; spatial parameters

1. Introduction

With the rapid advancement of urbanization, infrastructure projects have maintained
a high scale. However, due to the existence of a large number of existing buildings
surrounding many pits, excessive soil displacement and ground settlement generated
during the construction of deep foundation pits will drive the deformation of adjacent
buildings, even cause damage to buildings by tilting [1–4]. When the pit is excavated
to the design elevation, even with the presence of supporting reinforcement, it often
leads to emergency work conditions in neighboring buildings. Settlement of existing
buildings in the vicinity of subway station pits during construction may be caused by a
variety of influencing factors, such as complex geological and topographical conditions [5].
Therefore, it is necessary to study the settlement prediction methods and influencing factors
of neighboring buildings during excavation of deep foundation pit works.

For the settlement deformation of buildings induced by foundation pit construction,
scholars have obtained many research works using measured analysis and numerical simu-
lation [6,7]. Based on the field measurement data, it was found that the building settlement
basically occurred after the pit excavation and footing completion, and the maximum
lateral displacement of the building was basically consistent with the results of the pit
excavation in this environment [8]. In general, settlement of existing buildings caused by pit
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excavation is mainly related to the foundation type and the distance between the building
and the pit [9]. Based on the numerical simulation methods, the numerical model of vertical
inhomogeneous settlement of existing buildings during pit excavation was established
based on PLAXIS software with 2D model and a two-dimensional model considering the
plane strain–stress state, and it was found that pit excavation has a significant effect on
the stability of the buildings, which provides a more reliable prediction of the building
settlement [10,11]. However, the analysis of field-measured data is relatively homogeneous,
and numerical analysis has been criticized for its accuracy and validity due to the fact
that creating and validating finite element models is very time-consuming and sensitive to
boundary conditions [12].

Building settlement monitoring data belong to time-series data, the traditional pre-
diction model is complicated, the model parameters are difficult to determine, and the
dynamic prediction of settlement is not effective. Existing studies usually take the surface
settlement as the settlement of the surrounding buildings. Simplified equations for predict-
ing settlement were proposed by simplified assessment of building damage caused by pit
excavation [13]. The results of predicting building settlement using a non-isometric grey
model are better than other grey models, with a 30% improvement in fitting results over
the original model [14,15]. Deep learning can process a large amount of time-series data
quickly and has been used by many scholars in recent years for the settlement calendar
change problem. The use of neural networks to predict the settlement of a single foothold
on soft soil reinforced with rigid inclusions revealed that the important input parameters
in the network are cohesion, angle of internal friction, and Young’s modulus [16]. The
settlement of shallow foundations on gypsum soils was predicted using artificial neural
networks, and convergence of predicted values with true values was found [17]. Learning
and training samples of the back-propagation neural network were established by numeri-
cal software, and then, inverse analyses of the roadbed response coefficient K were carried
out using the neural network [18]. A regression model was used to predict tunnel-induced
ground settlement [19]. Deep learning can process a large amount of time-series data
quickly and has been used by many scholars in recent years to deal with the problem of
sedimentation ephemeral variation. By establishing a combined prediction model based
on the S-shaped growth curve, it was found that the model not only reflected the change
process of settlement but also predicted the surface settlement more accurately [20]. By
inputting geological conditions, construction parameters, construction sequence, grouting
volume, and grouting time, the ground settlement caused by shield tunnel construction was
predicted by using an optimized neural network based on a differential algorithm [21]. The
ground settlement caused by tunnel excavation was predicted by analyzing the relationship
between ground settlement and shield tunneling parameters, and the analysis results were
used as inputs to the BP neural network training model [22]. Based on the measured data,
the surface settlement caused by tunnel excavation in karst areas was predicted using an
extended one-dimensional convolutional neural network model [23]. In order to provide
the reader with an intuitive view of the existing research, the authors have classified the
relevant literature in Table 1.

Table 1. Classification of available research methods.

Classification Specific Methods

Traditional methods
Numerical modeling
Theoretical equations

Empirical methods

Grey models
Neural networks

Regression models
Curve-fitting methods

For long time-series data, the traditional back-propagation neural network model
is simple in structure and unable to capture the changing features of the series, and the
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recurrent neural network suffers from gradient vanishing; however, the long- and short-
term memory neural network better ameliorates these problems by setting up the control
unit. The LSTM (Long Short-Term Memory) neural network was widely used for various
tasks, such as speech recognition, sound modeling, and correlation analysis [24–27]. Of
course, many scholars in different fields have utilized this neural network to predict long
time-series data. For example, in the field of civil engineering, some scholars predicted
rock shear strength parameters (cohesion and internal friction angle) by constructing a
long short-term memory neural network [28]. Some scholars used bidirectional stacked
long short-term memory neural networks to predict soil movement [29]. Some scholars
predicted hydrological data and drilling logs based on improved LSTM models [30,31].
In the field of economics, some scholars used LSTM neural networks to predict stock
returns and stock price movements [32,33]. Some scholars have quantitative stock selection
strategies based on CNN (convolutional neural networks)–LSTM neural networks [34].

Currently, most of these research studies use neural networks to map the relationship
between static parameters such as soil properties and surface settlement [35], ignoring
the fact that deep foundation construction causes surface settlement as well as excessive
building settlement. Moreover, building settlement may be affected by time-dependent
dynamic factors such as construction conditions. For a subway station deep foundation pit
project, the construction conditions are complex, the construction period is long, and the
time for different construction conditions is different. For example, there is a big difference
between the time period of enclosure construction and reinforcement construction, which
often has different impacts on the settlement of the building. At the same time, the model
prediction accuracy needs to be analyzed. Both static and dynamic parameters affect the
accuracy of building settlement prediction models. The hyperparameters of the model,
such as batch size, need to be parameter-optimized [36].

The paper proposes a data-driven model for predicting the settlement of five buildings
around a foundation pit. There have been a number of studies using machine learn-
ing. Machine learning methods are used to develop empirical susceptibility prediction
models [37,38]. Calibrated code-based seismic vulnerability indices were predicted by
developing several regression and classification models on a dataset including nearly 300
buildings [39]. Different machine learning methods were used to predict the maximum
surface settlement caused by tunnel excavation [40]. In addition, machine learning has
been widely applied to other tunnel-related predictions [41,42].

Therefore, this paper intends to take a deep foundation pit project of a metro station
in Shanghai as the research background, and based on the LSTM artificial neural network,
to artificially determine the reference values of the main hyperparameters of the model
(batch size, training set ratio), and then to establish the prediction model of the settlement
of neighboring buildings in the construction of deep foundation pits. We then compare
the accuracy of single-point settlement prediction and cooperative prediction of multi-
point settlement of buildings, study the influence of construction parameters (construction
method, construction conditions), engineering geological parameters (unit weight, cohesion,
internal friction angle, Poisson’s ratio, and void’s ratio), and spatial parameters (vertical and
horizontal) on the accuracy of the settlement prediction model of the building, and validate
the LSTM neural network through the actual monitoring data, the network prediction
results, and the evaluation indexes. The accuracy of the building settlement prediction
model is verified by actual monitoring data, network prediction results, and evaluation
indexes. The research results can provide a certain reference for the safe construction and
normal operation of the foundation pit project.

2. Engineering Overview
2.1. Layout of Building Monitoring Points

Shanghai Rail Transit Line 15 is a north–south radial line in the western part of
Shanghai, passing through five administrative districts including Minhang District, Xuhui
District, Changning District, Putuo District, and Baoshan District. Guilin Road Station
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is located in Xuhui District and is surrounded by complex buildings and pipelines. The
station is an underground three-story island-type platform station, station center mileage
SK20+511.173, the total length of the station body is 486.37 m, the net width of the station
center is 22.84 m, and the width of the effective platform is 14 m. The planned ground
elevation is +4.06 m, the soil overlay at the center of the platform is about 4.31 m, and the
elevation of the rail surface in the center of the station is −19.42 m. the main body of the
station is a concrete box-type structure cast in situ, of which axes 1~48 are a double-column
three-span structure, axes 48~56 are a column-free single-span structure, and axes 56–58
are a single-column double-span structure. The main body of the station is a cast-in-place
concrete box structure, of which 1~48 are a double-column three-span structure, axes 48~56
are a column-free single-span structure, and axes 56–58 are a single-column double-span
structure. The subway station pit is a long pit with an average depth of about 25.8 m. It
is divided into six zones from A to F. Among them, A, C, and E are constructed by the
open-cut method, and B, D, and F are constructed by the total reverse method. There are
three main buildings around Area A (denoted by I, J, K) and two main buildings around
Area F (denoted by P, Q). The arrangement of monitoring points of each building is shown
in Figure 1.
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Figure 1. Layout of buildings’ measuring points. (a) Building monitoring points in Area A. (b) Build-
ing monitoring points in Area F.

2.2. Construction Parameters

The pit in Area A was constructed using the open-cut method, and the pit in Area
F was constructed using the full reverse method. Among them, working condition 1 is
that the soil body is in an equilibrium state of ground stress before the construction starts.
Condition 2 is the use of a 65 + 15 m diaphragm wall as the enclosure structure, which
not only plays the role of retaining soil but also serves as the reference and load-bearing
structure during the construction process. Condition 3 is the use of grouting reinforcement
for the foundation pit, which can effectively prevent the foundation pit from collapsing
during the excavation process. Rotary piles are used for reinforcement in Zone A, and three-
axis mixing piles are used for reinforcement in Zone F. The foundation pit is reinforced by a
series of grouting piles in each layer. Condition 4 is to set up support between each layer of
soil, two of which are concrete support and the rest are steel support. The support setup for
the reverse method is similar to that of the forward method, but at the same time, the roof
slab needs to be poured while excavating. Condition 5 is to continue with the next layer of
excavation and repeat the process until the bottom of the pit. The different construction
methods and working conditions are shown in Table 2.
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Table 2. Different construction methods and working conditions.

Working Conditions Open Cut Total Reverse

1 Ground Stress Equilibrium Ground Stress Equilibrium

2 Construction of enclosing
structure

Construction of enclosing
structure

3 Construction of soil reinforcement
at the base of the pit

Construction of soil reinforcement
at the base of the pit

4 First layer of earth excavation and
shoring

First layer excavation and shoring
and pouring of the roof slab

5 Excavation layer by layer Excavation layer by layer

2.3. Geotechnical Parameters

According to the ground investigation report. The stratum of the site is mainly powdery
soil, silty clay, sandy soil, and the soil layers excavated in the foundation pit mainly include
1⃝fill, 2⃝1 clay, 3⃝1 silty chalky clay, 4⃝1 silty clay, 5⃝1-1 clay, 5⃝1j clayey chalk with chalky clay,

and 5⃝2 sandy chalk, and the parameters of the soil layers used (including the thickness,
unit weight, cohesion, internal friction angle, void’s ratio, and Poisson’s ratio) are shown in
Table 3. The strength parameters of the soil mainly describe the shear strength of the soil,
and the commonly used parameters are cohesion and internal friction angle, which describe
the bonding forces between soil particles and the shear expansion characteristics of the soil,
respectively. The engineering geological profile is shown in Figure 2. The 1–14 black dots in
the figure are the sampling positions of geological exploration.
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Table 3. Soil parameters.

Soil Layer
Number

Soil Layer
Name Thickness/m Unit

Weight/kN·m−3 Cohesion/kPa
Internal
Friction
Angle/◦

Void’s
Ratio

Poisson’s
Ratio

1 fill 1.9 17.5 8 10 1.06 0.31
2 clay 1.6 17.7 18 17 1.10 0.33

3 silty chalky
clay 4.2 17.1 13 12 1.27 0.34

4 silty clay 11.3 16.5 11 13 1.46 0.36
5 clay 3.5 17.2 16 15 1.21 0.34

6
clayey chalk
with chalky

clay
4.5 17.9 21 12 1.11 0.32

7 sandy chalk 6.8 17.9 31 4 0.99 0.28

located (⃝

3. Set Up Buildings’ Settlement Prediction Model
3.1. Determination of Datasets for Building Settlement Prediction
3.1.1. Determination of the Initial Dataset

First, the raw data point interval was adjusted from date to days. The continuous
settlement monitoring values of each measuring point of the building were selected as the
raw data for processing, the data not conforming to the normal distribution were excluded
by using the principle of 3σ (the data should meet the range of the mean ± 3 times the
standard deviation), and the preliminary dataset was obtained by utilizing the method of
linear interpolation to complete the data. For a better understanding by the readers and of
the beauty of the picture, part of the initial dataset is shown in Figure 3.

3.1.2. Data Standardization and Anomaly Handling

In order to reduce the influence of the magnitude on the settlement prediction results,
the raw monitoring data were standardized, and the standardization formula was:

x
′
i =

(xi − x)
s

(1)

x
′
i is the standardized data, xi is the original monitoring data, x is the mean of the original

monitoring data, and S is the sample standard deviation of the original monitoring data.
The dataset obtained from the previous section is input into the network for training,

the NAN missing values (abnormal data) appearing during the training process need to
be deleted from the rows where they are located, and the deleted data rows need to be
supplemented to obtain the complete dataset. The final dataset obtained is the settlement

Spatial distribution also plays an important role in the settlement of buildings around
the foundation pit. In the process of deep foundation pit construction, the spatial parame-
ters affecting the settlement of buildings are mainly divided into two categories: horizontal
spatial parameters and vertical spatial parameters. Vertical spatial parameters include
the depth of the soft layer, and the thickness of the soft soil layer where the pit bottom is

addition, the minimum distance between the existing buildings and the station pit is 11.3 m,
which means that the frontal distance of all the buildings is less than the excavation depth
of the pit He (He = 25.8 m), and the ground settlement influence zone caused by the soft
soil excavation in the Shanghai Metro station may extend to 2–4 He behind the pit [43], the
horizontal distance between the buildings and the pit also affects the construction process
of the pit on the existing buildings’ disturbance size. Therefore, in this paper, the horizontal
clear distance between the monitoring point of the existing building and the center axis of
the foundation pit is selected as the horizontal spatial input parameter of the network.

2.4. Spatial Parameters

5 2 sandy silt, thickness of 6 . 8 m) is taken as the vertical spatial input parameter. In
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monitoring values for 100 days for each of the 14 monitoring points of buildings I, J, K, P,
and Q. It is worth mentioning that the dataset used in this paper is relatively small and
may not be suitable for overly complex studies.
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3.2. Set Up LSTM Model
3.2.1. LSTM Model

In order to solve the problem of long-term dependency, the Long Short-Term Memory
Neural Network was proposed [44]. LSTM is a special network in RNN with a mechanism
that can regulate the flow of information, which consists of three kinds of gating, namely
input gate, forgetting gate, and output gate, as well as memory cells. The network uses
time-series data, the input layer in the network is a known dataset, the hidden layer uses
the three gating controls to trade off the data, and the predicted values are obtained from
the output layer.

The LSTM model is shown in Figure 4, where Xt and Yt are the inputs and outputs
corresponding to moment t, respectively, σ is the sigmoid activation function, tanh is the
hyperbolic tangent function, and ct and ht are the unit state vectors obtained under the control
of the forgetting gate and the final output values obtained under the control of the output
gate, respectively. The network flowchart of the building settlement prediction model based
on LSTM is shown in Figure 4a. Figure 4b includes the Oblivion gate calculation system,
the input gate and the current candidate cell state, the current cell state, the output gate and
the final output. The model takes geological parameters, spatial parameters, and building
settlement monitoring values as inputs and building settlement predictions as outputs.

In this paper, the settlement prediction model of neighboring buildings for deep
foundation pit construction is set up with multiple hidden layers, and the LSTM layer is
connected with the dense layer sequentially; the initial learning rate, the number of hidden
units, the maximum number of back generation rounds, and the dropout are taken to be
0.007, 100, 80, and 0.2, respectively; and the loss transfer adopts the Adam algorithm.
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3.2.2. Network Evaluation Metrics

In order to examine the accuracy of the prediction results of the LSTM neural network,
four indexes, namely root-mean-square error (RMSE), mean absolute error (MAE), coefficient
of determination (R2), and relative error (maximum error between predicted and monitored
values × 100%, expressed as the letter E), were selected to evaluate the accuracy of the
prediction model. Among them, the root-mean-square error can visualize the dispersion
between the predicted values and the monitoring data of the network model and is easy to
calculate; the mean absolute error can measure the average modal length of the error but
does not take the direction into account; and the coefficient of determination can measure
the explanatory ability of the model for the dependent variable. The formulas for root-mean-
square error, mean absolute error, and coefficient of determination are as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (2)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (3)
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R2 =

n
∑

i=1
(ŷi − y)

n
∑

i=1
(yi − y)

(4)

E =

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (5)

where ŷi is the predicted value; y is the average value of the monitoring data; yi is the
monitoring data; n is the number of monitoring points; RMSE, MAE, the smaller the
predicted value and the monitoring value, the more consistent and accurate the model; R2

is the overall evaluation of the model’s goodness of fit, the value of the range of [0, 1], the
closer the R2 is to 1, the more accurate the model.

3.2.3. Selection of Hyperparameters

Hyperparameter tuning is crucial for LSTM predictive models when the dataset is
small [45]. The main hyperparameters that usually need to be tuned before the network
starts training are batch size and training set ratio. Among them, the batch size will have
an impact on the network accuracy and convergence rate, and in general, 32 was taken as
the default value of the batch size [46]. The building settlement dataset in pit engineering
is not complex; therefore, the batch size (8, 16, 32, 64, 128) is used for training in this paper.
Meanwhile, in traditional model training, 80% of the data are generally used as the training
set for model training, and 20% of the data are used as the test set for model effect checking,
and the results are often quite different from the actual engineering; therefore, this paper
uses the training set ratio (90%, 80%, 70%, 60%, 50%) for training.

The settlement monitoring data of 10 monitoring points (F1, F2, F14, F15, F147, F148,
F168, F169, F174, F175) of I–K were input into the model for training, and the model was
used to train the monitoring data from each of the 10 measurement sites sequentially.
When changing the size of the training batch, the training set ratio was kept constant, and
the average of the RMSE was calculated after the training of the 10 measurement points.
Similarly, the same is true when changing the training set ratio. The RMSE was used as
an evaluation index for the effect of hyperparameters in the model to affect the prediction
effect of the settlement [47], and the main hyperparameters of the model were determined
by the average of the root-mean-square error of all the measurement points at the time of
training (the batch size, the ratio of the training set), and the obtained results can be used
as the reference value for the artificial determination of hyperparameters for the prediction
of the building settlement by the neural network model.

We input the settlement monitoring data of each measurement point for training,
where the basic values of batch size and training set proportion are taken as 32 and 80%,
respectively, and the evaluation results under different hyperparameters during the model
training are shown in Table 4. In the table, RMSE is the average of the root-mean-square
error during the training of 10 measurement points.

Table 4. RMSE of various hyperparameter values during monitoring points training.

Hyperparameters Value RMSE (mm)

Batch size

8 0.64
16 0.59
32 0.61
64 0.73
128 0.71

Training set ratio

90% 0.63
80% 0.61
70% 0.67
60% 0.50
50% 0.55
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The training results show that when the batch size and training set ratio are taken
as 16 and 60%, respectively, the average RMSE of the measurement points is the smallest,
namely 0.59 and 0.50, respectively. Therefore, when using the LSTM network model for
predicting building settlement, the batch size of 16 and the training set ratio of 60% can be
used as the reference values for the hyperparameter settings.

3.3. Accuracy Validation of LSTM Neural Network Model

In order to verify the correctness of the constructed LSTM neural network model,
the settlement monitoring data from the aforementioned 10 measurement points were
sequentially input into the network for training, and the monitored and predicted values of
the maximum settlement were obtained as shown in Figure 5.
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As can be seen in Figure 5, the prediction accuracy of the model is more than 82%
when predicting the maximum settlement value of a single point of the building, among
which, the largest error between the predicted value and the monitoring value occurs
at the measurement point F148 (the predicted value is −2.46 mm, the monitoring value
is −2.99 mm, and the error of both of them is 17.73%), the evaluation indexes of RMSE,
MAE, and R2 are 0.68, 0.54, and 0.83, respectively, the error of the proposed model is small,
and the error of the constructed model is small. Therefore, the buildings adjacent to the
foundation pit can use the LSTM model constructed in this paper for settlement prediction.

4. Accuracy Analysis of LSTM Network Models for Predicting Buildings’ Settlement

Most of the previous researchers used static parameters to study the accuracy of
neural network prediction models; however, dynamic parameters such as construction
conditions also have a certain impact on the settlement of the surrounding buildings
during the construction of deep foundation pits. Next, this paper will analyze the effects
of dynamic parameters (construction conditions) and static parameters (soil properties,
spatial parameters) on the accuracy of the prediction model.

4.1. Analysis of the Effect of Construction Parameters on the Accuracy of Model

When the soil body is in the state of equilibrium of geostress, the change in building
settlement monitoring value is not obvious. In order to analyze the influence of different
construction methods on the accuracy of building settlement prediction under different
construction conditions, the settlement monitoring values of the buildings around the
pit corresponding to the open excavation method and the full reversal method under
conditions 2, 3, and 4 are selected as inputs, and the results obtained by using the LSTM
model for prediction are shown in Figures 6 and 7. At the same time, the prediction models
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used for different conditions are also different, according to the aforementioned model
hyperparameter optimization method to determine the parameters of the model for each
condition, which are as follows: Condition 2 (batch size of 16, training set ratio of 80%),
Condition 3 (batch size of 8, training set ratio of 60%), Condition 4 (batch size of 16, training
set ratio of 70%).
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As can be seen from Figures 6 and 7, under different working conditions, the predicted
building settlement corresponding to the open-cut method and the full reversal method
basically coincides with the monitoring values. The average RMSE, MAE, R2, and relative
errors of building settlement prediction under different working conditions are 0.81, 1.01,
0.78, and 18.06%, respectively, while the average RMSE, MAE, R2, and relative errors of
building settlement prediction under full reversal method are 0.78, 0.85, 0.85, and 14.88%,
respectively. This indicates that the settlement prediction of the surrounding buildings is
more accurate when the pit is constructed using the full reversal method.

Meanwhile, the prediction accuracy of the model varies under different working
conditions, and the relative errors of the settlement predictions of the two construction
methods are the largest in Working Condition 2 (19.86% and 15.87%, respectively), which
may be due to the large disturbance to the soil body caused by grouting reinforcement,
which causes the monitoring data to fluctuate greatly. This indicates that different working
conditions have a large impact on the accuracy of building settlement prediction, and the
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working conditions need to be taken into account when using the LSTM model to predict
the settlement of buildings around the foundation pit.
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4.2. Analysis of the Effect of Engineering Geological Parameters on the Accuracy of Model

The buildings’ settlement and deformation in the process of pit construction are closely
related to the stratum changes (the stratum parameters in this paper include soil gravity,
friction angle, cohesion, Poisson’s ratio, and pore ratio); in order to further analyze the
influence of the stratum-related parameters on the predicted value of the building settle-
ment, keep the other parameters unchanged, and take the building settlement monitoring
values and engineering geological parameters under the three conditions of the total re-
versal method as input, and the predicted value of the building settlement as output. The
prediction results are shown in Figure 8.

As can be seen from Figure 8, the prediction methods with or without considering the
effect of stratigraphic changes reflect the same pattern on the predicted values of single-
point settlement of buildings. The average relative error of the predictions for the three
conditions considering the effect of ground changes is around 8.23%, and the accuracy
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of the model prediction is improved by 6% compared with the one without considering
ground changes.
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4.3. Analysis of the Effect of Spatial Parameters on the Accuracy of Model

During the construction of a deep foundation pit in a soft soil area, the depth of the
soft soil layer and the horizontal distance between the building and the foundation pit have
an important influence on the settlement of the neighboring buildings. In order to study the
influence of spatial parameters on the accuracy of building settlement prediction, the spatial
parameters are now used as inputs together with the settlement monitoring values of the
three working conditions of the aforementioned full inversion method considering the
stratum changes, and the settlement prediction values are used as outputs. The prediction
results are shown in Figure 9.

As can be seen from Figure 9, the trend of the predicted values with or without consid-
ering spatial parameters is basically the same as that of the monitored values. The average
relative error of the prediction of the three working conditions with space parameters
considered is 5.01%, which is 3% higher than the prediction without space parameters.
Meanwhile, the average values of the evaluation indexes RMSE, MAE, and R2 for the three
working conditions were 0.57, 0.65, and 0.91, which were improved by 16%, 11%, and 3%,
respectively, compared with the evaluation indexes without considering space parameters.
This indicates that the LSTM model is more accurate in predicting the settlement of build-
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ings around deep foundation pit construction after considering spatial parameters. The
statistical results of each prediction as well as the findings of other scholars are shown in
Table 5.
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Table 5. Adjustment statistics.

Input Parameters RMSE (mm) MAE (mm) R2

Condition 0.78 0.85 0.85
Geological 0.68 0.73 0.88

Spatial 0.57 0.65 0.91
Shallal / 0.73 0.70

Ou / / 0.95

After considering geological and spatial parameters, the evaluation metrics of the
model, MAE and R2 were 0.65 and 0.91, respectively. Shallal’s network evaluation metrics,
MAE and R2, for predicting settlement using Artificial Neural Network (ANN) were 0.73
and 0.70, respectively [17], compared to which the network model prediction accuracy in
this study was improved by 10.96% and 30%, respectively. It indicates that the prediction
of building settlement using an LSTM neural network is more accurate than using ANN. It
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is worth mentioning that the R2 of this study is 0.91, which is not as good a fit compared to
Ou’s R2 (0.95) for predicting settlement using simplified equations [13], but there is only a
difference of about 4%, which can be further optimized and improved by adjusting the rest
of the hyperparameters of the model, etc.

4.4. Analysis of the Effect of Multi-Point Co-Prediction on the Accuracy of Model

Since there are usually multiple buildings around the pit and multiple measurement
points are set up for one building, the buildings will also affect each other, thus aggravating
the settlement of each building. Therefore, in addition to the static and dynamic parameters
mentioned above that affect the accuracy of the prediction model, the joint prediction of
different monitoring points will also have an impact on the model prediction accuracy.
Now, the settlement monitoring values of monitoring points F147-148 of I, F168-169 of J,
and F1 of K are taken as inputs, and the settlement prediction values of monitoring point
F1 are taken as outputs, and the proposed LSTM model is used for the joint prediction of
settlement at multiple points of the buildings, and the obtained monitoring values and
prediction values are shown in Figure 10.
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As can be seen from Figure 10, the change trends of predicted values and monitoring
values are basically the same. The maximum relative error between the predicted and
monitored values of single-point settlement of the building is 19.96% (the predicted value
is −3.59 mm, and the monitored value is −2.99 mm), the prediction accuracy is more than
80%, and the evaluation indexes RMSE, MAE, and R2 are 0.55, 0.42, and 0.81, respectively.
The maximum relative error between the predicted and monitored values of the coordi-
nated prediction of multi-point settlement is 11.79%, the prediction accuracy is more than
88%, and the network evaluation indexes RMSE, MAE, and R2 are 0.51, 0.37, and 0.89,
respectively. The maximum relative error between the predicted value and the monitored
value is 11.79%, the accuracy of the prediction is more than 88%, and the network evaluation
indexes are 0.51, 0.37, and 0.89 for RMSE, MAE, and R2, respectively, Compared with the
single-point settlement prediction, the accuracy of the multi-point settlement cooperative
prediction is increased by 8%, and the evaluation indexes are increased by 7%, 12%, and
10%, respectively, which means that the prediction of the building settlement using the
constructed LSTM model is more accurate by taking into consideration the interaction
effect of the buildings.

5. Conclusions

Accurate prediction of building settlement near deep foundation pit excavation is a
prerequisite for the safe construction of deep foundation pit projects. This paper takes a
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deep foundation pit project of a metro station in Shanghai as an example, establishes the
Long Short-Term Memory (LSTM) settlement prediction model using building settlement
monitoring data, and obtains the following conclusions.

(1) Hyperparameters have a key role in the predictive ability of network models. This
study explores the effects of batch size and training set ratio on model prediction
accuracy and finds that when the batch size and training set ratio are taken as 16 and
60%, respectively, the average values of the network evaluation index RMSE are 0.59
and 0.50, respectively, and the RMSE is smaller, at which time the model established
has the best prediction effect.

(2) When the settlement of the buildings around the foundation pit constructed by the
full reversal method is selected for prediction, the prediction accuracy of the network
model reaches 14.88%, which is about 3% higher than that of the open excavation
method, indicating that the prediction value of the long- and short-term memory
neural network model is more accurate when the settlement of the buildings around
the foundation pit constructed by the full reversal method is used.

(3) The LSTM neural network model established in this paper for predicting the settlement
of adjacent buildings caused by deep foundation pit construction has a model accuracy
of more than 82%, and the model prediction accuracy is related to the construction
parameters (construction conditions), engineering geological parameters (soil gravity,
cohesion, friction angle, Poisson’s ratio, and pore space ratio), and the more carefully the
parameters are considered, the more accurately the model prediction is formulated. The
evaluation metrics MAE and R2 were improved by 10.96% percent and 30%, respectively,
compared with the use of an Artificial Neural Network (ANN).

(4) The accuracy of the network model for predicting single-point settlement using multi-
point settlement of multiple buildings collaboratively is 88%. However, the accuracy
of the network model predicting single-point settlement using single-point settlement
is only 80%, which is about 8% lower than the accuracy of the collaborative prediction
using multiple monitoring points.

(5) This study investigates the feasibility of using a data-driven model (LSTM neural
network) to predict the settlement of surrounding buildings caused by deep founda-
tion pit excavation, and the results of the study can provide a certain basis for the
construction of foundation pit projects. The LSTM neural network has the capability
of predicting the settlement of surrounding buildings caused by the excavation of
a foundation pit with high accuracy. The authors will subsequently try to develop
physics-based machine learning to optimize the prediction results of the model.
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