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A B S T R A C T   

The thermo-hydro-mechanical response of a partially sealed circular tunnel in saturated rock subject to inner 
water pressure with high temperature is investigated by the fully coupling thermo-hydro-mechanical model. The 
tunnel is assumed to be partially sealed, and the partially permeable condition of the boundary of tunnel is 
established using the Darcy’ law. Furthermore, a stress coefficient depending on the volume fraction of the pore 
fluid is quoted to establish the stress coordination conditions at the boundary of tunnel, and the solutions of 
temperature increment, displacement, pore water pressure and stress are obtained in the domain of Laplace 
transform. Based on the Crump method taking inverse Laplace transform, the numerical solution to the problem 
is presented. Numerical results are displayed graphically and analyzed in detail.   

1. Introduction 

Dynamic behaviors of pressure tunnels have always been a hot issue 
that attracts a great deal of attention from scholars in the field of 
geotechnical engineering. Many researchers have obtained tunnels’ 
dynamic response to internal loads under permeable or impermeable 
boundary conditions (Gao et al., 2013; Gao et al., 2016; Lu et al., 2007; 
Senjuntichai and Rajapakse, 2010; Xia et al., 2017). In practical engi-
neering applications, concrete tunnel lining materials are typical kinds 
of porous materials with finite permeability, forming seepage field in the 
stratum. Therefore, Li believed that tunnel boundaries have partially 
permeable states; according to Darcy’s Law, some permeable boundary 
conditions were constructed (Li, 1999). On that basis, Liu et al. analyzed 
the relative permeability of the surrounding rocks and linings and the 
endurance of inner water pressure (Liu et al., 2010c). Nevertheless, 
when the surrounding rocks and linings are subjected to inner water 
pressure with high temperature, the pore fluid, stress and temperature 
can interact in the rock. That is, there are coupling effects between heat 
(temperature field), flow (seepage field), and forces (stress field and 
displacement field). These can deform the surrounding rock and lining, 
and even cause failure. Therefore, investigating the coupled thermo- 
hydro-mechanical dynamic response of tunnels’ linings in saturated 
rock under inner water pressure action is of great significance. It can 

provide certain theoretical foundations and engineering guidance for 
design of tunnels for stability, and calculation of pressure tunnels’ per-
formance characteristic. 

Biot proposed the coupled thermoelastic theory to eliminate the 
paradox that the elastic change has no effect on the temperature in the 
classical uncoupled theory. However, Biot’s thermoelastic coupling 
model based on Fourier heat conduction law can only predict infinite 
heat propagation velocity (Biot, 1977). Therefore, many scholars 
modified the traditional Fourier’s law of heat conduction, to establish a 
model for predicting the propagation of a thermal wave with a finite 
velocity. Lord and Shulman formulated a generalized theory of ther-
moelasticity by incorporating a flux-rate term into Fourier’s law of heat 
conduction (Lord and Shulman, 1967). Green and Lindsay developed a 
temperature-rate-dependent thermoelasticity that includes two thermal 
relaxation times (Green and Lindsay, 1972). Green and Naghdi intro-
duced the theory of thermoelasticity without energy dissipation (Green 
and Naghdi, 1993). There are other generalized thermoelasticity the-
ories such as two-temperature generalized thermoelasticity (Youssef, 
2011) and fractional order theory of thermoelasticity (Ezzat, 2011). All 
these theories have been used extensively for analyzing semi-infinite 
half space, spherical cavities, and cylinders (Abouelregal, 2013; 
Hamza et al., 2014; Hamza et al., 2016; Kundu and Mukhopadhyay, 
2005; Xia et al., 2009). It should be noted that the effects of pores and 
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pore water were mostly neglected in the above studies. 
However, rocks are always porous medium in practical engineering 

applications, which can lead to coupling effects between temperature, 
force and seepage under inner water pressure. Studies based on satu-
rated porous medium models are more aligned with practical condi-
tions. Bai et al. established the mathematical model for full thermo- 
hydro-mechanical coupling, and analyzed the thermal consolidation 
problem of saturated porous medium with spherical cavities (Bai and Li, 
2013). Based on the Biot’s consolidation theory, Darcy’s law, and the 
modified Fourier heat conduction equation, Liu et al. constructed a full 
coupling thermo-hydro-mechanical dynamic model (Liu et al., 2009) 
and then used it to examine the dynamic response of saturated porous 
thermoelastic media with spherical cavities and cylindrical pores (Liu 
et al., 2010a; Liu et al., 2010b). Moreover, the results of the above 
analysis were compared with the results from a hydro-mechanical 
coupling dynamic model. Taking relaxation effects into account, Sher-
ief and Hussein established a thermo-fluid-solid dynamic model of 
saturated porous media with two temperatures and analyzed transient 
responses of semi-infinite bodies (Sherief and Hussein, 2012). On that 
basis, Ezzat et al. constructed a coupling thermo-hydro-mechanical dy-
namic model of saturated porous materials with a fractional derivative 
with respect to time, and examined dynamic response of semi-infinite 
porous medium under thermal shock (Ezzat and Ezzat, 2016). Based 
on porous media theory, Yang et al. established a coupling thermo- 
hydro-mechanical dynamic model under local thermal non- 
equilibrium conditions and the related variational principle (Yang, 
2005). By introducing the concept of a mean weighted temperature, He 
et al. derived a coupling thermo-hydro-mechanical model under local 
thermal non-equilibrium conditions and analyzed the transient response 
of saturated porous medi with spherical cavity (He and Yang, 2009). 
Abousleiman and Ekbote focused on the transient dynamic response of 
saturated transverse isotropic soil (Abousleliman and Ekbote, 2005). 
After considering thermo-hydro-mechanical coupling effects, Xiong et 
al. employed the regular modal method for investigating the dynamic 
response of saturated porous foundation soil and analyzed the effect of 
loading frequency changes on various physical characteristics of the 
foundation (Xiong et al., 2018). Although the studies based on porous 
thermoelastic theory achieved greater progress than those based on 
thermoelastic theory, most of these analyses were performed based on 
uncoupling or partial coupling theory in view of the complexity of the 
governing equations. These scholars still addressed coupling thermo- 
hydro-mechanical issues using Fourier heat conduction law. That is, 
thermo-hydro-mechanical analysis in real sense has yet to be realized 
(Bai and Abousleiman, 1997; Blond et al., 2003). 

Li et al. employed Darcy’s law to establish partly permeable bound-
ary conditions for calculations of tunnel pressure (Li, 1999). Xie and Liu 
also led their teams to examine the dynamic responses of partially 
permeable tunnel and spherical cavity in saturated porous media under 
axisymmetric load and fluid pressure (Liu and Xie, 2005; Xie et al., 
2004). In this study, considering the full effects of thermo-hydro- 
mechanical coupling, the lining and rock can be regarded as flexible 
porous elastic materials and saturated porous thermoelastic medium. 
Based on generalized thermoelastic theory, a mathematic model for the 
full coupled thermo-hydro-mechanical was established, and the dy-
namic responses of partially permeable cylindrical lined tunnel in 
saturated rock when the tunnel boundary was under inner water pres-
sure with high temperature were investigated. Then, the expressions of 
temperature increments, pore water pressure and displacement were 
derived using the Laplace transform and the Cayley-Hamilton law. The 
tunnel was assumed to be partially sealed; the partially permeable 
conditions of the boundary of tunnel were established using the Darcy’ 
law. Furthermore, a stress coefficient depending on the volume fraction 
of the pore fluid was quoted to establish the stress coordination condi-
tions at the boundary of tunnel, and the solutions of temperature 
increment, displacement, pore water pressure and stress were obtained 
in the domain of Laplace transform. Finally, the corresponding 

numerical solutions were obtained using the Crump inversion method of 
taking the inverse Laplace transform, and the effects of the stress and 
permeability coefficients on the thermo-hydro-mechanical response of a 
partially sealed circular tunnel were studied. 

2. Mathematical model 

As shown in Fig. 1, there exists a cylindrical lining tunnel, with an 
inner radius of R1 and an external radius of R2, in infinite rock. A time- 
dependent inner water pressure with high temperature acts on the 
tunnel boundary, which can be equivalent to a combination of a heat 
source and mechanical source. In practical engineering, tunnels are 
generally supported by their lining structure and the lining is generally 
made up of concrete. The surrounding infinite rock and lining can be 
treated as a saturated porous thermoelastic media. Li et al. pointed out 
that the tunnel is in semi-closed state (Li, 1999), i.e., the boundary is 
partly permeable. In practical engineering, the lining thickness h is far 
smaller than the tunnel radius, and the lining can be regarded as a kind 
of fully flexible material. That is, the elastic modulus approaches 
0 (El→0). By assuming that the tunnel is infinitely long, the system can 
be treated as plane strain model in further analysis. The lining and rock 
are in close contact with each other; they exhibit small deformations and 
no relative slippage. 

3. Thermo-hydro-elastodynamic response of saturated rock 

Assuming the rock to be a linear-elastic, isotropic, saturated porous 
medium and by considering the effect of deformation on the balance of 
mass and heat, the dynamic equation of the saturated rock can be 
expressed as (Liu et al., 2010a): 

(λ+2μ)∇2e − α∇2p − λ
′

∇2
(

θ+ τ1
∂θ
∂t

)

=(ρ − ρwα)∂2e
∂t2 +ρwac

∂2θ
∂t2 −

ρw

M
∂2p
∂t2

(1)  

where, e = ∂(rur)/r∂r is the bulk strain of the porous medium.ur,p are the 
radial displacement and pore water pressure, respectively. θ is temper-
ature increment (θ = T − T0, T is the current temperature and T0 the 
initial temperature); λ = 2vμ/(1 − 2v) and μ = G are Lame constants of 
the bulk material; v is the Poisson’s ratio of rock; G is shear modulus. α 
and M are the Biot’s modulus that have the relation α = 1 − K/Ks and 1/
M = n/Kw + (1 − n)/Ks, where Ks and Kw are the bulk modulus of solid 
grains and pore fluid, respectively; and K = λ+2μ/3 is the drained bulk 
modulus of the rock medium; λ′ is the thermal modulus with the relation 
λ
′

= Kac; and ac is the coefficient of the volumetric expansion of the 

Fig. 1. Model of circular tunnel in saturated rock.  
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porous medium determined by ac = naw + (1 − n)as, n is the porosity of 
the rock and as, aw are the coefficients of volumetric thermal expansion 
of the solid grains and the pore fluid, respectively; ∇ is differential 
operator. ρs and ρw are the densities of the solid grains and the fluid, 
respectively; where ρ = (1 − n)ρs + nρw. τ1 is relaxation time. 

With the constitutive relations for linear porothermoelasticity and 
considering thermal osmosis term in fluid flux (Ghassemi and Diek, 
2002), and the inertial effects of solid-fluid interaction (Xia et al., 2017), 
the equation of fluid flux can be written as (Liu et al., 2009): 

κ∇2p+DT∇
2θ = α ∂e

∂t
− ac

∂θ
∂t

+
1
M

∂p
∂t

+ κρw

(α
n

− 1
) ∂2e

∂t2 −
κρwac

n
∂2θ
∂t2 +

κρw

nM
∂2p
∂t2 (2)  

where, κ is the mobility coefficient of water, κ = kl/ρwg, kl is the intrinsic 
permeability; g is the gravitational acceleration. The theory of 
thermoporo-elasticity is also formulated in the terms of ‘phenomeno-
logical’ constants, i.e., DT, a phenomenological coefficient associated 
with the influence of thermal gradient on the water flux(thermo- 
osmosis). 

If the property of non-linearity of thermal poroelastic medium is 
neglected and the change of temperature is small, then the balance 
equation of heat of the linear, thermal, poroelastic medium can be 
simplified as following (Liu et al., 2009): 

m
(

∂θ
∂t

+ τ2
∂2θ
∂t2

)

− λ
′

T0

(
∂e
∂t

+ τ3
∂2e
∂t2

)

= S1∇
2θ+ S2∇

2p+ S3

[(α
n
− 1

) ∂2e
∂t2

+
1

Mn
∂2p
∂t2 −

ac

n
∂2θ
∂t2

]

(3) 

where, m is the gravimetric specific heat, m = (1 − n)ρsCs + nρwCw; 
Cs and Cw are the specific heats of the solid grains and fluid, respectively. 
The constants S1, S2 and S3 are S1 = k − T0awKwDT, S2 =

T0(DT − awKwκ), S3 = T0awKwκρw, respectively. k is the thermal con-
ductivity, k = (1 − n)ks + nkw; ks and kw are the coefficient of thermal 
conductivity of solid grains and fluid, respectively. τ2 and τ3 are relax-
ation times. 

In order to solve Eqs. (1)–(3), this paper introduces the following 
dimensionless quantities: 

r* = Vηr, u* = Vηu, t* = V2ηt, τ*
i = V2ητi(i = 1,2,3), η = m/k, θ* =

λ
′

θ/(λ+ 2G)

p* = αp/(λ + 2G), V =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(λ + 2G)/ρ

√
(4)  

where, V is shear wave velocity. 
In terms of these non-dimensional variables, Eqs. (1)–(3) take the 

following forms, (dropping the asterisks for convenience): 

∇2e − ∇2p − ∇2
(

θ + τ1
∂θ
∂t

)

= ϕ1
∂2e
∂2t

+ϕ2
∂2θ
∂2t

+ϕ3
∂2p
∂2t

(5)  

∇2p+φ0∇
2θ = φ1

∂e
∂t

+φ2
∂θ
∂t

+φ3
∂p
∂t

+φ4
∂2e
∂t2 +φ5

∂2θ
∂t2 +φ6

∂2p
∂t2 (6)  

(
∂
∂t
+ τ2

∂2

∂t2

)

θ+ψ0

(
∂
∂t
+ τ3

∂2

∂t2

)

e=ψ1∇
2θ+ψ2∇

2p+ψ3
∂2e
∂t2 +ψ4

∂2θ
∂t2 +ψ5

∂2p
∂t2

(7)  

where, 

ϕ1 =
ρ − ρwα

ρ ,ϕ2 =
ρwac(λ + 2G)

λ′ ρ
,ϕ3 = −

ρw(λ + 2G)

ραM
(8)  

φ0 =
DTα
λ′κ

, φ1 =
α2

(λ + 2G)κη, φ2 = −
αac

λ′ κη
, φ3 =

1
κηM

, φ4 =
ρwα(α − n)

ρn
(9)  

φ5 = −
ρwacα(λ + 2G)

λ′ρn
, φ6 =

ρw(λ + 2G)

ρMn
(10)  

ψ0 = −
(λ

′

)
2T0

m(λ + 2G)
, ψ1 =

S1

k
, ψ2 =

S2λ
′

αk
, ψ3 =

S3λ
′

(α − n)
ρkn

, ψ4

= −
S3ac(λ + 2G)

nρk
, ψ5 =

S3(λ + 2G)λ
′

ρkαMn
(11) 

The technique of Laplace transform is introduced to solve the gov-
erning Eqs. (5)–(7), and can be defined as: 

sγf (s) =
∫ ∞

0

∂γf (t)
∂tγ e− stdt (12) 

Applying Laplace transformation to Eqs. (5)–(7), we can obtain 
transformed governing equations: 
(
∇2 − s2ϕ1

)
e =

[(
1 + τ1)∇

2 + ϕ2s2]θ+
(
∇2 + ϕ3s2)p (13)  

(
∇2 − sφ3 − φ6s2)p =

(
φ1s + φ4s2)e+

(
φ2s + φ5s2 − φ0∇

2)θ (14)  

(
s + τ2s2 − ψ4s2 − ψ1∇

2)θ+
[
ψ0(s + τ3s2) − ψ3s2]e =

[
ψ2∇

2 + ψ5s2]p
(15)  

where, s is Laplace transform parameter; e =
∫∞

0 e− stedt, θ =
∫∞

0 e− stθdt, 
p =

∫∞
0 e− stpdt. 

By substituting Eq. (14) and Eq. (15) into Eq. (13), the following 
expression can be got: 
(
∇6 − ξ1∇

4 + ξ2∇
2 − ξ3

)
(θ, p, e) = 0 (16)  

where, ξi, i = 1, 2,3 denotes the s-dependent parameter. Variables ξi,

i = 1,2, 3 can be written as: 

ξ1 =
γ1γ5 + ψ1γ6 − ψ2γ8 + γ3γ7

ψ1γ5 + ψ2γ7
(17)  

ξ2 =
γ2γ5 + γ1γ6 − γ4γ7 − γ3γ8

ψ1γ5 + ψ2γ7
(18)  

ξ3 =
γ2γ6 + γ4γ8

ψ1γ5 + ψ2γ7
(19)  

χ0 = s+ τ2s2 − ψ4s2 (20)  

χ1 = s2φ6 + sφ3 (21)  

χ2 = sφ1 + s2φ4 (22)  

χ3 = s2φ5 + sφ2 (23)  

χ4 = ψ0
(
s2τ3 + s

)
− s2ψ3 (24)  

γ1 = ϕ1ψ1s2 + χ0 + χ4(sτ1 + 1) (25)  

γ2 = χ0ϕ1s2 − χ4ϕ2s2 (26)  

γ3 = χ4 +ψ2ϕ1s2 − ψ5s2 (27)  

γ4 = χ4ϕ3s2 +ϕ1ψ5s4 (28)  

γ5 = χ4 − χ2ψ2 (29)  

γ6 = χ4χ1 + χ2ψ5s2 (30)  

γ7 = χ2ψ1 − χ4ψ0 (31)  

γ8 = χ3χ4 − χ0χ2 (32) 
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According to the differential decomposition theory, processing Eq. 
(16) leads to the following expression: 
(
∇2 − k2

1

)(
∇2 − k2

2

)(
∇2 − k2

3

)
(θ, p, e) = 0 (33)  

where, k1, k2 and k3 are the characteristic roots of Eq. (16), denoting the 
velocities of propagation of three possible waves, i.e, the compressional 
(P1 and P2) wave, and thermal (T) wave. Roots k1, k2 and k3 are given by: 

k2
1 =

1
3
(2p1sin(q1) + ξ1) (34)  

k2
2 =

1
3

[
ξ1 − p1

( ̅̅̅
3

√
cos(q1) + sin(q1)

) ]
(35)  

k2
3 =

1
3

[
ξ1 + p1

( ̅̅̅
3

√
cos(q1) − sin(q1)

) ]
(36)  

p1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ξ2
1 − 3ξ2

√

(37)  

q1 =
1
3

sin− 1
(

−
2ξ3

1 − 9ξ1ξ2 + 27ξ3

2p3
1

)

(38) 

According to the three kinds of waves P1, P2, and T, in saturated 
porothermoelastic medium, propagation in pore water and soil skeleton, 
respectively, which were denoted by Liu et al. (2010a). The solution of 
Eq. (33) can be written as θ = θ1 + θ2 + θ3,p = p1 + p2 + p3, and e =

e1 + e2 + e3. So, Eq. (33) can be decomposed as follows: 

(∇2 − k2
1)(θ, p, e) = 0 , (∇2 − k2

2)(θ, p, e) = 0, (∇2 − k2
3)(θ, p, e)

= 0(∇2 − k2
3)(θ, p, e) = 0 (39) 

Solving Eq. (39), one obtains: 

θ =
∑3

i=1
AiK0(kir)+

∑3

i=1
DiI0(kir) (40)  

where, K0(x) is the modified Bessel function of the second kind and 
order 0, I0(x) is the modified Bessel function of the first kind and order 0. 

Note that I0(x)→∞ when x→∞, so constants Di should equal to zero. 
Then, the solutions of Eq. (39), which is bounded at infinity, are given 
by: 

θ =
∑3

i=1
AiK0(kir) (41)  

p =
∑3

i=1
BiK0(kir) (42)  

e =
∑3

i=1
CiK0(kir) (43)  

where,Ai,Bi, Ci(i = 1, 2, 3) are arbitrary constants. 
Since Ai, Bi and Ci are linearly independent constants, the following 

expression can be acquired by substituting Eqs. (41)–(43) into Eq. (13) 
and Eq. (14): 

Bi = ω1iAi, Ci = ω2iAi (44)  

where, 

ω1i =
(k2

i + ϕ2s2)χ2 + (k2
i − ϕ1s2)(χ3 − φ0k2

i )

(k2
i − ϕ1s2)(k2

i − χ1) − (k2
i + ϕ3s2)χ2

(45)  

ω2i =
(k2

i − χ1)(k2
i + ϕ2s2) + (k2

i + ϕ3s2)(χ3 − φ0k2
i )

(k2
i − ϕ1s2)(k2

i − χ1) − (k2
i + ϕ3s2)χ2

(46) 

Integrating both sides of Eq. (43) from zero to infinity, and assuming 
that ur vanishes at infinity, one obtaines (Liu et al., 2009). 

ur = −
∑3

i=1

Ci

ki
K1(kir) (47) 

Next, by taking the Laplace transform of the established stress-strain 
constitutive relationship, in which the temperature effect is considered 
and dimensionless processing, the expressions of stress can be derived: 

σr = e − β2ur

r
− θ(1 + sτ1) − p (48)  

σθ = (1 − β2)e+ β2ur

r
− θ(1 + sτ1) − p (49)  

where, β2 = 2G/(λ+ 2G), σr, σθ are radial stress and hoop stress of a 
porous medium, respectively. 

By substituting Eqs. (41)–(43) and Eq.(47) into Eq. (48) and Eq. (49), 
both radial stress and circumferential stress can be expressed as: 

σr =
∑3

i=1

[
β2

rki
ω2iK1(kir) + (ω2i − ω1i − 1 − sτ1)K0(kir)

]

Ai (50)  

σθ =
∑3

i=1

{

−
β2

rki
ω2iK1(kir) +

[(
1 − β2)ω2i − ω1i − 1 − sτ1

]
K0(kir)

}

Ai

(51)  

4. Boundary conditions and solutions 

The average permeability coefficient of concrete lining is about 1×

10− 8m/s, and has great effect on the amount of ground water infiltra-
tion of tunnel. Due to the relative permeability of lining and rock, the 
tunnel is partially sealed and the flow boundary condition is partial 
permeable. The partially permeable property of the tunnel can be 
denoted approximately with a dimensionless permeability parameter ksl 
(Li, 1999). Theoretically, the constant ksl ranges between zero and 
infinite. As ksl approaches to zero, an impermeable lining is recovered 
and as ksl approaches to a very large value, a permeable lining is 
obtained. 

As the material of lining and rock is assumed to be porous elastic 
medium, we consider the case of completely flexible lining, the stiffness 
El of lining as it approaches zero. Due to the lining thickness is far 
smaller than tunnels’ radius, i.e., h << R1, the influence of thickness of 
the thin lining is neglected. The value of pressure supported by the solid 
at the boundary of tunnel can be ascertained approximately with the 
help of stress coefficient τ, i.e. τq(t), and that supported by the pore 
water is (1 − τ)q(t). During the process of carrying out these calculations, 
whether heat sources and mechanical sources act on the contact surface 
between the lining and saturated rock (r = R2) or the inner boundary 
(r = R1) is not distinguished (Liu et al., 2010c). Coupling the property of 
partial sealing and porosity of tunnel material and geometry, the stress, 
pore water pressure and temperature increment boundary condition of 
tunnel can be defined as: 

σr = − τq(t) r = R2 (52)  

∂p
∂r

=
ksl

R2
[p − (1 − τ)q(t)] r = R2 (53)  

θ = T(t) r = R2 (54)  

where, the dimensionless stress coefficient τ (the range of τ is from 0 to 
1) that depends on the porosity n of rock was proposed by Liu et al. 
(2010c) to estimate the water pressure supported by the solid and the 
pore water pressure, respectively. The coefficient τ is defined as 1 − ηc, 
and ηc, calculated approximately as ηc = n2/3, is the area coefficient of 
pore water on the surface of the tunnel due to the poroelastic property of 
lining and rock. For the concrete material, ηc = 2/3 1; and the fracture 
rock ηc ≈ 1 (Liu and Xie, 2005). From Eq. (53) and Eq. (54), two extreme 
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boundaries can be obtained, i.e. the inner water pressure is completely 
supported by the pore water when τ→0 and is completely supported by 
the solid of rock when τ→1. There exist also two extreme cases for the 
parameter ksl, i.e ksl = kt/[kl(lnR2 − lnR1)], in which kt is the intrinsic 
permeability of lining (Li, 1999). When ksl→0, an impermeable lining is 
recovered and when ksl→∞, a permeable case is obtained. 

The inner water pressure applied on the surface of tunnel, considered 
herein is assumed to be an axially symmetric with a heat source q(t) and 
mechanical sourceT(t). Therefore, q(t) and T(t) can be written as: 

q(t) =

⎧
⎪⎨

⎪⎩

sin
(

πt
a0

)

0⩽t⩽a0

0 otherwise
(55)  

T(t) =

⎧
⎪⎨

⎪⎩

sin
(

πt
a0

)

0⩽t⩽a0

0 otherwise
(56)  

where, a0 denotes the amplitude (here, a0 = 1). 
By conducting the Laplace transform on Eq. (55) and Eq. (56), the 

expressions of heat source q(t) and mechanical source T(t) can be 
derived: 

q(s) =
πa0(s + e− a0s)

a2
0s2 + π2 (57)  

T(s) =
πa0(s + e− a0s)

a2
0s2 + π2 (58) 

By substituting Eqs. (41), (42) and (50) into Eqs. (52)–(54), the 
following expression can be derived: 

∑3

i=1

[
β2

R2ki
ω2iK1(kiR2) + (ω2i − ω1i − 1 − sτ1)K0(kiR2)

]

Ai = − τq(s) (59)  

∑3

i=1

[

kiK1(kiR2) +
ksl

R2
K0(kiR2)

]

ω1iAi =
ksl

R2
(1 − τ)q(s) (60)  

∑3

i=1
K0(kiR2)Ai = T(s) (61) 

By combining Eqs. (59)–(61), the undetermined coefficients A1, A2 
and A3 can be derived, and the thermo-hydro-mechanical coupling dy-
namic response of the lining tunnel in saturated rock under inner water 
pressure can be obtained. 

5. Degenerate solution of the problem 

5.1. Distribution of internal water pressure q(t)

When stress coefficient τ = 0, the inner water pressure is completely 
supported by the pore water pressure. Then, the boundary conditions 
can be written as: 

σr = 0 r = R2 (62)  

∂p
∂r

=
ksl

R2
[p − q(t)] r = R2 (63)  

θ = T(t) r = R2 (64) 

Therefore, by substituting Eqs. (41), (42) and (50) into Eqs. (62)– 
(64), the following expressions can be derived: 

∑3

i=1

[
β2

R2ki
ω2iK1(kiR2) + (ω2i − ω1i − 1 − sτ1)K0(kiR2)

]

Ai = 0 (65)  

∑3

i=1

[

kiK1(kiR2) +
ksl

R2
K0(kiR2)

]

ω1iAi =
ksl

R2
q(s) (66)  

∑3

i=1
K0(kiR2)Ai = T(s) (67) 

By combining Eqs. (65)–(67), expressions for the undetermined co-
efficients A1, A2 and A3 can be derived. 

When stress coefficient τ = 1, the inner water pressure is completely 
supported by the solid of rock. Therefore, the stress, pore water pressure 
and temperature increment boundary condition of the lining tunnel can 
thus be defined as: 

σr = − q(t) r = R2 (68)  

∂p
∂r

=
ksl

R2
p r = R2 (69)  

θ = T(t) r = R2 (70) 

Therefore, by substituting Eqs. (39), (40) and (48) into Eqs. (68)– 
(70), the following expressions can be derived: 

∑3

i=1

[
β2

R2ki
ω2iK1(kiR2) + (ω2i − ω1i − 1 − sτ1)K0(kiR2)

]

Ai = − q(s) (71)  

∑3

i=1

[

kiK1(kiR2) +
ksl

R2
K0(kiR2)

]

ω1iAi = 0 (72)  

∑3

i=1
K0(kiR2)Ai = T(s) (73) 

By combining Eqs. (71)–(73), the expressions of undetermined co-
efficients A1, A2 and A3 can be derived. 

5.2. Permeable and impermeable boundary of tunnel 

When ksl→0, the tunnel boundary is completely impermeable, and 
the boundary conditions can be expressed as: 

σr = − τq(t) r = R2 (74)  

∂p
∂r

= 0 r = R2 (75)  

θ = T(t) r = R2 (76) 

Therefore, by substituting Eqs. (39), (40) and (48) into Eqs. (74)– 
(76), the following expressions can be derived: 

∑3

i=1

[
β2

R2ki
ω2iK1(kiR2) + (ω2i − ω1i − 1 − sτ1)K0(kiR2)

]

Ai = − τq(s) (77)  

∑3

i=1
[kiK1(kiR2)]ω1iAi = 0 (78)  

∑3

i=1
K0(kiR2)Ai = T(s) (79) 

By combining Eqs. (77)–(79), the expressions of undetermined co-
efficients A1, A2 and A3 can be derived. 

When ksl→∞, the tunnel boundary is completely permeable, and the 
boundary conditions can be expressed as: 

σr = − τq(t) r = R2 (80)  

p = 0 r = R2 (81)  
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θ = T(t) r = R2 (82) 

Therefore, by substituting Eqs. (41), (42) and (50) into Eqs. (80)– 
(82), the following expressions can be derived: 

∑3

i=1

[
β2

R2ki
ω2iK1(kiR2) + (ω2i − ω1i − 1 − sτ1)K0(kiR2)

]

Ai = − τq(s) (83)  

∑3

i=1
K0(kiR2)ω1iAi = 0 (84)  

∑3

i=1
K0(kiR2)Ai = T(s) (85) 

By combining Eqs. (83)–(85), the expressions of undetermined co-
efficients A1, A2 and A3 can be derived. 

6. Numerical results and discussions 

In order to derive the expressions for the temperature increment, 
radial displacement, stress and pore water pressure in the time domain, 
the effects of both the stress coefficient (τ) and the relative permeability 
coefficient (ksl) of saturated rock on the dynamic response of the satu-
rated rock were investigated in detail. It is so difficult to obtain the 
analytical solutions that this study employed the Crump inversion 
method for finding those numerical solutions. 

Assuming the function F(s) denotes the Laplace transform of the 
function F(t), the Crump inversion in inverse Laplace transform can be 
expressed as (Crump, 1976): 

F(t) ≈
eat

T∗

{
1
2

F(a) +
∑∞

k=1

[

Re
[

F
(

a +
kπi
T∗

)]

cos
kπt
T∗

− Im
[

F
(

a

+
kπi
T∗

)]

sin
kπt
T∗

]}

(86)  

where T∗ > t/2. If|F(t)|〈Meαt , the error |ϛ|⩽Meυe− 2T∗(a− υ) (in which 
T∗ > t/2). 

By referring to Refs. (Liu et al., 2010c) and (Liu et al., 2009), the 
related parameters in the calculation can be set as below: 

v = 0.35, G = 1 × 106Pa, ρs = 2610kg
/

m3, Kw = 3.3GPa, ks

= 3.29J
/

s × m ×◦ C, T0 = 300K, Ks = 59GPa, Cw

= 4186m2⋅s− 2⋅◦C− 1, ac = 3 × 10− 5◦C− 1, g = 9.8m
/

s2, as

= 3 × 10− 5◦C− 1, aw = 3 × 10− 4◦C− 1, n = 0.4, kl = 1 × 10− 8m
/

s, kw

= 0.582J
/

s⋅m⋅◦C, Cs = 937m2/s− 2⋅◦C− 1, ρw = 1000kg
/

m3, K

= 2.95GPa, τ1 = 0.05s, τ2 = 0.02s, τ3 = 0.01s, ksl = 100, τ = 0.4 and t

= 1
(87)  

6.1. Comparative analysis 

6.1.1. Case1: Influences of the stiffness of lining 
This paper compares the calculation results of the stiff lining with 

that of the completely flexible lining to analyze the effect of the stiffness 
of lining. Fig. 2. shows the time history of radial displacement and pore 
water pressure at the tunnel surface with impermeable boundary con-
dition under the joint action of a sudden constant heat source and me-
chanical source. Due to the lining is a thin porous material, the 
displacement of the stiff lining is slightly smaller than that of solution 
without considering the stiffness of lining. Since this section assumes the 
tunnel boundary is impermeable, the stiffness of lining less influences 
the pore water pressure. Therefore, the calculation results of the 
completely flexible lining are basically reasonable. 

6.1.2. Case2: Thermo-elastodynamic response 
For an ideal thermoelastic medium, there is no fluid in the rock for 

ρw = 0 andn = 0, and the governing equations of the coupled thermo- 
hydro-mechanical response case described in section 3 can also be 
reduced to that of a general thermoelastic medium (Lord and Shulman, 
1967). In addition, when τ1, τ2 and τ3 are zero, and the tunnel boundary 
is impermeable, the calculation results of this paper can also be reduced 
to that of Liu’s (Liu et al., 2009). Figs. 3 and 4 give the time history of 
radial displacement of the tunnel with impermeable boundary condition 
for the results of present work, general thermoelastic theory and Liu’s 
theory, respectively, under a suddenly applied constant mechanical 
source and heat source. The calculation results for present work, general 
thermoelastic theory and Liu’s theory do not have big differences under 
a suddenly applied constant mechanical source and heat source. How-
ever, for the suddenly applied constant heat source, radial displacement 
of present work is significantly larger than that of general thermoelastic 
model because the coefficient of thermal expansion of the fluid is much 
larger than that of solid. The above comparisons indicate that the 
derivation in Section 3 is correct, and numerical method is also efficient. 

Fig. 2a. The time history of radial displacement for the stiff lining and without 
stiffness lining cases under the joint action of a sudden constant heat source and 
mechanical source. 

Fig. 2b. The time history of pore water pressure for the stiff lining and without 
stiffness lining cases under the joint action of a sudden constant heat source and 
mechanical source. 
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6.2. Effect of the stress coefficient τ 

Fig. 5 displays the variation curves of pore water pressure with the 
dimensionless radius r/R2 when the stress coefficient was set to different 
values (τ = 0, τ = 0.4, τ = 0.7 and τ = 1). Apparently, pore water 
pressure dropped with the increase of τ. In particular, τ significantly 
affected pore water pressure at the tunnel boundary (i.e., r = R2). When 
τ = 0, pore water pressure reaches its maximum because the inner water 
pressure is completely supported by the pore water pressure. When τ =

1, pore water pressure at the tunnel boundary is almost closing to the 
zero because the inner water pressure is completely supported by the 
solid of rock. It is shows that with the increase of τ, the pore pressure 
gradually increases because the inner water pressure is supported by the 
pore water pressure gradually reduces. 

Fig. 6 shows the variations of radial displacement with the dimen-
sionless radius (r/R2), when the stress coefficient was set to different 
values (τ = 0,τ = 0.4, τ = 0.7 and τ = 1). It can be observed that stress 
coefficient τ most significantly affect radial displacement. Furthermore, 
with the increase of τ, the radial displacement at the tunnel boundary 
gradually increased because the inner water pressure is supported by the 

solid of rock gradually increases. However, at approximately r/R2 =

1.6, the effect of τ on radial displacement changed abruptly. When 
1.6⩽r/R2⩽2.5, radial displacement dropped gradually with the increase 
of τ. At approximatelyr/R2 > 2.5, τ had almost no effect on radial 
displacement. The phenomenon may be due to the interaction between 
thermo-hydro-mechanical in the saturated rock. 

Fig. 7 shows the laws of circumferential stress variation with respect 
to the dimensionless radius (r/R2), when the stress coefficient was set to 
different values (τ = 0,τ = 0.4, τ = 0.7 and τ = 1). The value of τ had 
significant effects on the circumferential stress at the interface between 
soil and lining (i.e., r = R2). As the dimensionless radius r/R2 increased, 
τ imposed decreasing effects on circumferential stresses, and simulta-
neously, circumferential stress dropped steadily. 

Fig. 8 shows the laws of temperature increment variation with 
respect to the dimensionless radius (r/R2) when the stress coefficient 
was set to different values (τ = 0, τ = 0.4, τ = 0.7 and τ = 1). Appar-
ently, the stress coefficient τ had almost no effect on temperature 
increment whether inner water pressure is supported by pore water 
pressure or is supported by the solid of rock. 

Fig. 3. The time history of radial displacement for present work, Lord’s and 
Liu’s cases under a sudden constant mechanical source. 

Fig. 4. The time history of radial displacement for present work, Lord’s and 
Liu’s cases under a sudden constant heat source. 

Fig. 5. Variations of pore water pressure with the dimensionless radius when 
τ = 0, τ = 0.4, τ = 0.7 and τ = 1. 

Fig. 6. Variations of radial displacement with the dimensionless radius when 
τ = 0, τ = 0.4, τ = 0.7 and τ = 1. 
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6.3. Effect of relative permeability coefficient ksl 

Fig. 9 displays the rules of variations of the radial displacement with 
the dimensionless radius at the moment t = 1 when the relative 
permeability coefficient is set to different values (ksl = 0.01, ksl = 1, 
ksl = 100 and ksl = 10000), during which the other parameters are set 
according to Eq. (86). It can be easily observed that relative permeability 
coefficient significantly affected radial displacement under hot water 
pressure. At the interface between lining and soil (i.e., r = R2), radial 
displacement increases gradually with the increase of the relative 
permeability coefficient, which suggests that displacement related to the 
permeability at the boundary. However, the displacements at ksl = 0.01 
and ksl = 1 are close to each other. This is due to the fact that the 
interface between linings and soils begin to be impermeable. When ksl =

10000, the displacement is positive at the interface between lining and 
soil (i.e., the structure was stretched), and the displacement become 
negative at 2 < r/R2 < 3 (i.e., the structure is compressed). It suggests 
that radial displacement fluctuate when the boundary approached 
permeable. Furthermore, permeability and impermeability are the only 
two limiting conditions at the tunnel boundary. 

Fig. 10 displays the rules of variations of the pore water pressure 

with the dimensionless radius as the moment t = 1 when the relative 
permeability coefficient is set to different values (ksl = 0.01,ksl = 1, 
ksl = 100 and ksl = 10000, respectively), during which the other pa-
rameters are set according to Eq. (87). Under hot water pressure, the 
boundary permeability has a great deal of effect on the pore water 
pressure. At the interface between lining and soil (i.e., r = R2), the pore 
water pressure increases gradually with the increasing of relative 
permeability coefficient. However, at ksl = 0.01 andksl = 1, pore water 
pressure imposes slight effects. This is because that the boundary is 
already closed, i.e., the boundary is impermeable. 

Fig. 11 displays the rules of variations of the temperature increment 
with the dimensionless radius at the moment t = 1 when the relative 
permeability coefficient is set to different values (ksl = 0.01,ksl = 1, 
ksl = 100 and ksl = 10000, respectively), during which the other pa-
rameters are set according to Eq. (87). It can be easily observed that the 
temperature increment is irrelevant to the relative permeability coeffi-
cient of the lining-soil boundary. With the increase of the relative 
permeability coefficient, the temperature increments remain almost 
unchanged. 

Fig. 12 displays the rules of variations of the circumferential stress 
with the dimensionless radius at the moment t = 1 when the relative 
permeability coefficient is set to different values (ksl = 0.01, ksl = 1, 

Fig. 7. Variations of circumferential pressure with the dimensionless radius 
when τ = 0, τ = 0.4, τ = 0.7 and τ = 1. 

Fig. 8. Variations of temperature increment with the dimensionless radius 
when τ = 0, τ = 0.4, τ = 0.7 and τ = 1. 

Fig. 9. Variations of radial displacement with the dimensionless radius when 
ksl = 0.01, ksl = 1, ksl = 100 and ksl = 10000. 

Fig. 10. Variations of pore water pressure with the dimensionless radius when 
ksl = 0.01, ksl = 1, ksl = 100 and ksl = 10000. 
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ksl = 100 and ksl = 10000, respectively), during which the other pa-
rameters are set according to Eq. (87). The circumferential stress in-
creases gradually with the increase of the relative permeability 
coefficient at the interface between lining and soil (r = R2). However, 
the circumferential stresses at ksl = 0.01 and ksl = 1 exhibites slight 
differences. This can be attributed to the fact that the boundary began to 
close, i.e., the boundary is impermeable. 

7. Conclusions 

The thermo-hydro-mechanical response of a partially sealed circular 
tunnel in an isotropic, saturated porous rock is analyzed when the sur-
face of the tunnel is subjected to a time dependent heat and mechanical 
source. A partially sealed boundary condition is used to model water 
flow across the tunnel-rock interface. A stress coefficient depending on 
the volume fraction of the pore fluid is quoted to establish the stress 
coordination conditions at the boundary of tunnel, and the solutions of 
temperature increment, displacement, pore water pressure and stress 
are obtained in the domain of Laplace transform. The influences of 
permeable coefficient and stress coefficient on the response are dis-
cussed. The results provide a rational method for the design of high 
temperature tunnel since some important parameters are considered. 
However, the model is one dimensional because of the axisymmetric 
loading and the governing equations of the thermo-hydro-mechanical 
response are restricted to those cases that within the scope of the anal-
ysis e.g. linear elasticity. 

By introducing a stress coefficient to model the interface between 
lining and rock, the modeling problem of inner water pressure supported 
by the boundary of tunnel can be effectively addressed, and the view-
point that inner water pressure is sheared by lining and rock is proposed. 

A dimensionless permeable parameter defines the flow capacity of 
the lining, is introduced by considering the relative permeability of the 
lining of the tunnel and the surrounding rock. The available result 
without considering the properties of partial sealing and porosity is only 
an extreme case of this paper. 
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